Skip to content

Literature references

A

A92ii: Archer (1992) J. Phys. Chem. Ref. Data

Archer, D. G. (1992). Thermodynamic Properties of the NaCl + H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl·2H2(cr), and Phase Equilibria. Journal of Physical and Chemical Reference Data 21, 793–829. doi:10.1063/1.555915

A99: Archer (1999) J. Phys. Chem. Ref. Data

Archer, D. G. (1999). Thermodynamic Properties of the KCl+H2O System. Journal of Physical and Chemical Reference Data 28, 1–17. doi:10.1063/1.556034

AW90: Archer & Wang (1990) J. Phys. Chem. Ref. Data

Archer, D. G., and Wang, P. (1990). The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes. Journal of Physical and Chemical Reference Data 19, 371–411. doi:10.1063/1.555853

C

CB90: Clegg & Brimblecombe (1989) J. Phys. Chem.

Clegg, S. L., and Brimblecombe, P. (1989). Solubility of Ammonia in Pure Aqueous and Multicomponent Solutions. Journal of Physical Chemistry 93(20), 7237-7248. doi:10.1021/j100357a041

CMR93: Campbell et al. (1993) Mar. Chem.

Campbell, D. M., Millero, F. J., Roy, R., Roy, L., Lawson, M., Vogel, K. M., et al. (1993). The standard potential for the hydrogen-silver, silver chloride electrode in synthetic seawater. Marine Chemistry 44, 221–233. doi:10.1016/0304-4203(93)90204-2

CRP94: Clegg et al. (1994) J. Chem. Soc., Faraday Trans.

Clegg, S. L., Rard, J. A., and Pitzer, K. S. (1994). Thermodynamic properties of 0–6 mol kg–1 aqueous sulfuric acid from 273.15 to 328.15 K. Journal of the Chemical Society, Faraday Transactions 90, 1875–1894. doi:10.1039/FT9949001875

D

D90: Dickson (1990) J. Chem. Thermodyn.

Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 0.5 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22, 113–127. doi:10.1016/0021-9614(90)90074-Z.

dLP83: de Lima & Pitzer (1983) J. Solution Chem.

de Lima, M. C. P., and Pitzer, K. S. (1983). Thermodynamics of saturated electrolyte mixtures of NaCl with Na2SO4 and with MgCl2. Journal of Solution Chemistry 12, 187–199. doi:10.1007/BF00648056

DR79: Dickson & Riley (1979) Mar. Chem.

Dickson, A. G., and Riley, J. P. (1979). The estimation of acid dissociation constants in sea-water media from potentiometric titrations with strong base. II. The dissociation of phosphoric acid. Marine Chemistry 7, 101–109. doi:10.1016/0304-4203(79)90002-1.

F

FW86: Felmy & Weare (1986) Geochim. Cosmochim. Acta

Felmy, A. R., and Weare, J. H. (1986). The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California. Geochimica et Cosmochimica Acta 50(12), 2771–2783. doi:10.1016/0016-7037(86)90226-7

G

GM89: Greenberg & Møller (1989) Geochim. Cosmochim. Acta

Greenberg, J. P., and Møller, N. (1989). The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C. Geochimica et Cosmochimica Acta 53, 2503–2518. doi:10.1016/0016-7037(89)90124-5

GP89: Goyet & Poisson (1989) Deep-Sea Res. Pt. A

Goyet, C., and Poisson, A. (1989). New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Research Part A 36, 1635–1654. doi:10.1016/0198-0149(89)90064-2.

GT17: Gallego-Urrea & Turner (2017) Mar. Chem.

Gallego-Urrea, J. A., and Turner, D. R. (2017). Determination of pH in estuarine and brackish waters: Pitzer parameters for Tris buffers and dissociation constants for m-cresol purple at 298.15K. Marine Chemistry 195, 84–89. doi:10.1016/j.marchem.2017.07.004

H

H73: Hansson (1973) Deep-Sea Res.

Hansson, I. (1973). A new set of acidity constants for carbonic acid and boric acid in sea water. Deep-Sea Research 20, 461–478. doi:10.1016/0011-7471(73)90100-9.

HFM89: Hershey et al. (1989) J. Solution Chem.

Hershey, J. P., Fernandez, M., and Millero, F. J. (1989). The dissociation of phosphoric acid in NaCl and NaMgCl solutions at 25°C. Journal of Solution Chemistry 18(9), 875–891. doi:10.1007/BF00685063

HM83: Holmes & Mesmer (1983) J. Phys. Chem

Holmes, H. F., and Mesmer, R. E. (1983). Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 °C. Journal of Physical Chemistry 87, 1242–1255. doi:10.1021/j100230a030

HM93: He & Morse (1983) Geochim. Cosmochim. Acta

He, S., and Morse, J. W. (1983). The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C. Geochimica et Cosmochimica Acta 57(15), 3533–3554. doi:10.1016/0016-7037(93)90137-L

HMW84: Harvie et al. (1984) Geochim. Cosmochim. Acta

Harvie, C. E., Møller, N., and Weare, J. H. (1984). The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochimica et Cosmochimica Acta 48, 723–751. doi:10.1016/0016-7037(84)90098-X

HM86: Holmes & Mesmer (1986) J. Solution Chem.

Holmes, H. F., and Mesmer, R. E. (1986). Thermodynamics of aqueous solutions of the alkali metal sulfates. Journal of Solution Chemistry 15, 495–517. doi:10.1007/BF00644892

HPM88: Hershey et al. (1988) Geochim. Cosmochim. Acta

Hershey, J. P., Plese, T., and Millero, F. J. (1988). The pK1* for the dissociation of H2S in various ionic media. Geochimica et Cosmochimica Acta 52, 2047–2051. doi:10.1016/0016-7037(88)90183-4

HPR93: Hovey et al. (1993) J. Chem. Thermodyn.

Hovey, J. K., Pitzer, K. S., and Rard, J. A. (1993). Thermodynamics of Na2SO4(aq) at temperatures T from 273 K to 373 K and of {(1-y)H2SO4+yNa2SO4}(aq) at T = 298.15 K. Journal of Chemical Thermodynamics 25(1), 173–192. doi:10.1006/jcht.1993.1016

J

JESS: May et al. (2011) J. Chem. Eng. Data

May, P. M., Rowland, D., Hefter, G., and Königsbeger, E. (2011). A Generic and Updatable Pitzer Characterization of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data 56(12), 5066–5077. doi:10.1021/je2009329
See also: jess.murdoch.edu.au/vewbel.shtml

K

KRCB77: Khoo et al. (1977) Anal. Chem.

Khoo, K. H., Ramette, R. W., Culberson, C. H., and Bates, R. G. (1977). Determination of hydrogen ion concentrations in seawater from 5 to 40C: standard potentials at salinities from 20 to 45 per mille. Analytical Chemistry 49, 29–34. doi:10.1021/ac50009a016.

L

LTA21: Lodeiro et al. (2021) J. Chem. Eng. Data

Lodeiro, P., Turner, D. R., Achterberg, E. P., Gregson, F. K. A., Reid, J. P., and Simon L. Clegg (2021). Solid–Liquid Equilibria in Aqueous Solutions of Tris, Tris-NaCl, Tris-TrisHCl, and Tris-(TrisH)2SO4 at Temperatures from 5 to 45 °C. Journal of Chemical & Engineering Data 66(1), 437–455. doi:10.1021/acs.jced.0c00744.

M

M79: Millero (1979) Geochim. Cosmochim. Acta

Millero, F. J. (1979). The thermodynamics of the carbonate system in seawater. Geochimica et Cosmochimica Acta 43(10), 1651–1661. doi:10.1016/0016-7037(79)90184-4

M83: Millero (1983) Geochim. Cosmochim. Acta

Millero, F. J. (1983). The estimation of the pK*HA of acids in seawater using the Pitzer equations. Geochimica et Cosmochimica Acta 47(12), 2121–2129. doi:10.1016/0016-7037(83)90037-6

M88: Møller (1988) Geochim. Cosmochim. Acta

Møller, N. (1988). The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochimica et Cosmochimica Acta 52, 821–837. doi:10.1016/0016-7037(88)90354-7

MHJZ89: Millero et al. (1989) J. Atmos. Chem.

Millero, F. J., Hershey, J. B., Johnson, G., and Zhang, J.-Z. (1989). The solubility of SO2 and the dissociation of H2SO3 in NaCl solutions. Journal of Atmospheric Chemistry 8(4), 377–389. doi:10.1007/BF00052711

MNTR08: Miladinović et al. (2008) J. Solution Chem.

Miladinović, J., Ninković, R., Todorović, M., and Rard, J. A. (2008). Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 − y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4·MgSO4(aq) at 298.15 K. Journal of Solution Chemistry 37(3), 307–329. doi:10.1007/s10953-007-9238-y

MP98: Millero & Pierrot (1998) Aquat. Geochem.

Millero, F. J., and Pierrot, D. (1998). A Chemical Equilibrium Model for Natural Waters. Aquatic Geochemistry 4, 153–199. doi:10.1023/A:1009656023546

MWRB78: Macaskill et al. (1978) J. Solution Chem.

Macaskill, J. B., White, D. R., Robinson, R. A., and Bates, R. G. (1978). Isopiestic measurements on aqueous mixtures of sodium chloride and strontium chloride. Journal of Solution Chemistry 7(5), 339–347. doi:10.1007/BF00662894

MZF93: Millero et al. (1993) Mar. Chem.

Millero, F. J., Zhang, J.-Z., Fiol, S., Sotolongo, S., Roy, R. N., Lee, K., and Mane, S. (1993). The use of buffers to measure the pH of seawater. Marine Chemistry 44, 143–152. doi:10.1016/0304-4203(93)90199-X

P

P75: Pitzer (1975) J. Solution Chem.

Pitzer, K. S. (1975). Thermodynamics of electrolytes. V. effects of higher-order electrostatic terms. Journal of Solution Chemistry 4, 249–265. doi:10.1007/BF00646562

P91: Pitzer (1991) Activity Coefficients in Electrolyte Solutions

Pitzer, K. S. (1991). “Ion Interaction Approach: Theory and Data Correlation,” in Activity Coefficients in Electrolyte Solutions, 2nd Edition, ed. K. S. Pitzer (CRC Press, Florida, USA), 75–153.

PMR97: Pierrot et al. (1997) J. Solution Chem.

Pierrot, D., Millero, F. J., Roy, L. N., Roy, R. N., Doneski, A., and Niederschmidt, J. (1997). The activity coefficients of HCl in HCl−Na2SO4 solutions from 0 to 50°C and ionic strengths up to 6 molal. Journal of Solution Chemistry 26(1), 31–45. doi:10.1007/BF02439442

PP82: Peiper & Pitzer (1982) J. Chem. Thermodyn.

Peiper, J. C., and Pitzer, K. S. (1982). Thermodynamics of aqueous carbonate solutions including mixtures of sodium carbonate, bicarbonate, and chloride. Journal of Chemical Thermodynamics 14, 613–638. doi:10.1016/0021-9614(82)90078-7

PP87i: Pabalan & Pitzer (1987) Geochim. Cosmochim. Acta

Pabalan, R. T., and Pitzer, K. S. (1987). Thermodynamics of NaOH(aq) in hydrothermal solutions. Geochimica et Cosmochimica Acta 51, 829–837. doi:10.1016/0016-7037(87)90096-2

PP86ii: Phutela & Pitzer (1986) J. Phys. Chem.

Phutela, R. C., and Pitzer, K. S. (1986). Heat capacity and other thermodynamic properties of aqueous magnesium sulfate to 473 K. Journal of Physical Chemistry 90, 895–901. doi:10.1021/j100277a037

PS76: Pitzer & Silvester (1976) J. Solution Chem.

Pitzer, K. S., and Silvester, L. F. (1976). Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4. Journal of Solution Chemistry 5(4), 269–278. doi:10.1007/BF00645465

R

RC99: Rard & Clegg (1999) J. Chem. Thermodyn.

Rard, J. A., and Clegg, S. L. (1999). Isopiestic determination of the osmotic and activity coefficients of {zH2SO4+ (1−z)MgSO4}(aq) at T = 298.15 K. II. Results for z = (0.43040, 0.28758, and 0.14399) and analysis with Pitzer's model. Journal of Chemical Thermodynamics 31, 399–429. doi:10.1006/jcht.1998.0461

RGB80: Roy et al. (1980) J. Solution Chem.

Roy, R. N., Gibbons, J. J., Bliss, D. P., Casebolt, R. G., and Baker, B. K. (1980). Activity coefficients for ternary systems: VI. The system HCl + MgCl2 + H2O at different temperatures; application of Pitzer's equations. Journal of Solution Chemistry 9, 911–930. doi:10.1039/F19827801405

RGO81: Roy et al. (1981) J. Chem. Soc., Faraday Trans.

Roy, R. N., Gibbons, J. J., Ovens, L. K., Bliss, G. A., and Hartley, J. J. (1981). Activity coefficients for the system HCl + CaCl2 + H2O at various temperatures. Applications of Pitzer's equations. Journal of the Chemical Society, Faraday Transactions 1 78, 1405–1422. doi:10.1039/F19827801405

RGRG86: Roy et al. (1986) J. Phys. Chem.

Roy, R. N., Gibbons, J. J., Roy, L. N., and Greene, M. A. (1986). Thermodynamics of the unsymmetrical mixed electrolyte HCl-SrCl2. Applications of Pitzer's equations. Journal of Physical Chemistry 90(23), 6242–6247. doi:10.1021/j100281a035

RM81i: Rard & Miller (1981) J. Chem. Eng. Data

Rard, J. A., and Miller, D. G. (1981). Isopiestic Determination of the Osmotic Coefficients of Aqueous Na2SO4, MgSO4, and Na2SO4-MgSO4 at 25 °C. Journal of Chemical & Engineering Data 26, 33–38. doi:10.1021/je00023a013

RRV93: Roy et al. (1993) Mar. Chem.

Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E., et al. (1993). The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44, 249–267. doi:10.1016/0304-4203(93)90207-5.

RZM91: Roy et al. (1991) J. Solution Chem.

Roy, R. N., Zhang, J.-Z., and Millero, F. J. (1991). The ionization of sulfurous acid in Na−Mg−Cl solutions at 25°C. Journal of Solution Chemistry 20(4), 361–373. doi:10.1007/BF00650763

S

SRG87: Simonson et al. (1987) J. Chem. Eng. Data

Simonson, J. M., Roy, R. N., and Gibbons, J. J. (1987). Thermodynamics of Aqueous Mixed Potassium Carbonate, Bicarbonate, and Chloride Solutions to 368 K. Journal of Chemical & Engineering Data 32(1), 41–45. doi:10.1021/je00047a011

SRM87: Simonson et al. (1987) J. Solution Chem. 17

Simonson, J. M., Roy, R. N., Mrad, D., Lord, P., Roy, L. N., and Johnson, D. A. (1987). The thermodynamics of aqueous borate solutions II. Mixtures of boric acid with calcium or magnesium borate and chloride. Journal of Solution Chemistry 17, 435–446. doi:10.1007/BF00647311

SRRJ87: Simonson et al. (1987) J. Solution Chem. 16

Simonson, J. M., Roy, R. N., Roy, L. N., and Johnson, D. A. (1987). The thermodynamics of aqueous borate solutions I. Mixtures of boric acid with sodium or potassium borate and chloride. Journal of Solution Chemistry 16, 791–803. doi:10.1007/BF00650749

T

TM82: Thurmond & Millero (1982) J. Solution Chem.

Thurmond, V., and Millero, F. J. (1982). Ionization of carbonic acid in sodium chloride solutions at 25°C. Journal of Solution Chemistry 11(7), 447–456. doi:10.1007/BF00647107

W

WM13: Waters & Millero (2013) Mar. Chem.

Waters, J. F., and Millero, F. J. (2013). The free proton concentration scale for seawater pH. Marine Chemistry 149, 8–22. doi:10.1016/j.marchem.2012.11.003

Z

ZD17: Zezin & Driesner (2017) Fluid Phase Equilib.

Zezin, D., and Driesner, T. (2017). Thermodynamic properties of aqueous KCl solution at temperatures to 600 K, pressures to 150 MPa, and concentrations to saturation. Fluid Phase Equilibria 453, 24–39. doi:10.1016/j.fluid.2017.09.001